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Introduction

We consider the Cauchy problem for the Boussinesq equation

∂2U

∂t2
= ∆U + β1∆

∂2U

∂t2
− β2∆2U + ∆f (U), x ∈ R, t > 0, (1)

U(x , 0) = U0(x),
∂U

∂t
(x , 0) = U1(x), (2)

on the unbounded region R with asymptotic boundary conditions
U(x , t)→ 0, ∆U(x , t)→ 0, as |x | → ∞,

where ∆ = ∂2

∂x2 , the constants β1 > 0, β2 > 0 are dispertion
parameters and α is an amplitude parameter.

f (U) = αUp, p = 2, 3, ..., p ∈ N

.
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Mathematical Models

describing the spreading of longitudinal strain wave in an
isotropic compressible elastic rod
A. Porubov, Amplification of nonlinear strain waves in solids, World

Scientific,2003;

in the propagation a small amplitude wave on the surface of
shallow water
C. Christov, An energy-consistent dispersive shallow-water model,

Wave motion, 2001.

References

C. Christov, Conservative difference scheme for Boussinesq model of
surface waves,1996

N. Kolkovska, M. Dimova, D. Vassileva, K. Angelow.
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Hamiltonian System

Canonical form  ∂U

∂t
∂V

∂t

 = J

 δH

δU
δH

δV



∂V

∂x
=
∂U

∂t
, J =

[
0 (Id − β1∆)−1

∂x

(Id − β1∆)−1
∂x 0

]

Hamiltonian

H(U,V ) =
1

2

∫
R

(
V 2 + U2 + β1

(
∂V

∂x

)2

+ β2

(
∂U

∂x

)2

+
2αUp+1

p + 1

)
dx
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Hamiltonian system

∂U

∂t
=
∂V

∂x
,

∂V

∂t
= (Id − β1∆)−1

(
∂U

∂x
− β2

∂3U

∂x3
+ α

∂Up

∂x

)
.

Symplecticness

The solving mapping ΦH(t0, t), defined by
(U,V ) = ΦH(t0, t)(U0,V0)

is an area-preserving transformation.

Checking preservation of the area

ΦH preserves the area and orientation ⇐⇒ ψ′T Jψ′ = J, where ψ′ is the
Jacobian matrix of ΦH .
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Theorem (Conservation laws)

For every t ≥ 0 the solution U(x , t) to the DDE satisfies the following
identities

H(U(x , t)) = H(U(x , 0)), i.e. conservation of the Hamiltonian
(energy)

H(U,V ) = 1
2

∫
R

(
V 2 + U2 + β1

(
∂V
∂x

)2
+ β2

(
∂U
∂x

)2
+ 2αUp+1

p+1

)
dx ;

I (U(x , t)) = I (U(x , 0)), i.e. conservation of the mass
I (U(x , t)) =

∫
R U(x , t)dx ;

M(U(x , t),V (x , t)) = M(U(x , 0),V (x , 0)), i.e. conservation of the
momentum
M(U(x , t),V (x , t)) =

∫
R (U(x , t)V (x , t) + β1Ux(x , t)Vx(x , t)) dx .
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Notation

Domain Ω = [−L1, L2] with an uniform grid x0, ..., xN with a
step h;

ui (t) ≈ U(xi , t), vi (t) ≈ V (xi , t);
~u(t) = (u1(t), ..., uN(t)) , ~v(t) = (v1(t), ..., vN(t));

notations for some discrete derivatives of the mesh functions:

∂x̂ui := ux̂ ,i =
ui+1 − ui−1

2h
,

∆̂u := ux̂ x̂ ,i =
ui+2 − 2ui + ui−2

4h2
,

ux̂ x̂ x̂ ,i :=
ui+3 − 3ui+1 + 3ui−1 − ui−3

8h3
.
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Semi-discrete Hamiltonian

Hh(~u(t), ~v(t)) =
1

2

N∑
i=1

h

(
v2
i + β1v

2
x̂ ,i + u2

i + β2u
2
x̂ ,i +

2α

p + 1
up+1
i

)

After evaluation of the variational derivatives of Hh with respect to
unknowns ui (t) and vi (t), i = 1, 2, ...,N we get

Semi-discrete system of 2N ODE

dui (t)

dt
= vx̂ ,i ,

dvi (t)

dt
= (Id − β1∆̂h)−1

(
ux̂ ,i − β2ux̂ x̂ x̂ ,i + α (up)x̂ ,i

)
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A =
1

2h


0 1 0 · · · 0 −1
−1 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1
1 0 0 · · · −1 0

 ,B =
1

4h2


2 0 −1 · · · 0
0 2 0 · · · −1
...

...
...

. . .
...

−1 0 0 · · · 0
0 −1 0 · · · 2


f (~u) = α(up1 , u

p
2 , ..., u

p
N)T

Separable Hamiltonian System

d~u

dt
= A~v

(Id + β1B)
d~v

dt
= A(~u + β2B~u + f (~u))
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The matrix Jh = (Id + β1B)−1

[
0 A

A 0

]
satisfies the

requirements for Poisson brackets from
Hairer, Lubich and Wanner, Geometric numerical integration, 2004
and generates the Poisson brackets

The 3-stage Lobatto IIIA and IIIB methods

0 0 0 0
1/2 5/24 1/3 −1/24

1 1/6 2/3 1/6

1/6 2/3 1/6

0 1/6 -1/6 0
1/2 1/6 1/3 0

1 1/6 5/6 0

1/6 2/3 1/6

a) Lobatto IIIA b) Lobatto IIIB
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~un+1 = ~un +
τ

6

(
~k1 + 4~k2 + ~k3

)
, ~vn+1 = ~vn +

τ

6

(
~l1 + 4~l2 + ~l3

)
,

~k1 = A~vn, ~k2 = A
(
~vn +

τ

24
(5~l1 + 8~l2 − ~l3)

)
, ~k3 = A

(
~vn +

τ

6
(~l1 + 4~l2 + ~l3)

)
,

~l1 = (Id + β1B)−1A
{(
~un +

τ

6
(~k1 − ~k2)

)
+

+ β2B
(
~un +

τ

6
(~k1 − ~k2)

)
+ α

(
~un +

τ

6
(~k1 − ~k2)

)p}
,

~l2 = (Id + β1B)−1A
{(
~un +

τ

6
(~k1 + 2~k2)

)
+

+ β2B
(
~un +

τ

6
(~k1 + 2~k2)

)
+ α

(
~un +

τ

6
(~k1 + 2~k2)

)p}
,

~l3 = (Id + β1B)−1A
{(
~un +

τ

6
(~k1 + 5~k2)

)
+

+ β2B
(
~un +

τ

6
(~k1 + 5~k2)

)
+ α

(
~un +

τ

6
(~k1 + 5~k2)

)p}
.
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Properties

The approximation error of the time integration method is O(τ 4), thus
the overall error of the discrete method is O(h2 + τ 4).

Theorem

For every n=0,...,K the discrete FDS conserves exactly

the discrete symplectic structure ωn = d~zn ∧ Jhd~z
n−1, where

~zn = (~un, ~vn) (the scheme is symplectic);

the discrete mass Ih (tn) :=
∑N

i=1 hu
n
i .
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Algorithm

A. Evaluate u(0), u(1) from the initial conditions

B. For n = 1, 2, . . . ,K
1 The stage vector ~k1 is computed by ~v at nth time layer

2 ~k1
[0]

= ~k
[0]
2 = ~k

[0]
3 = A~vn

3 for s = 1, 2, ... continue until the iterations converge, i.e. until

max{|~l [s]
i − ~l

[s+1]
i |, |~k [s]

i − ~k
[s+1]
i |} < tol , i = 1, 2, 3, where tol

is a prescribed precision.

4 ~un+1 = ~un + τ
6

(
~k1

[s+1]
+ 4~k2

[s+1]
+ ~k3

[s+1]
)

,

~vn+1 = ~vn + τ
6

(
~l1

[s+1]
+ 4~l2

[s+1]
+ ~l3

[s+1]
)
.
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Propagation of a solitary wave

Exact solution of the 1D equation

ũ(x , t; c) =
3(c2 − 1)

2α
sech2

−1

2

√
c2 − 1

β1c2 − β2
(x − ct)



Error: ψh = max 0≤k≤N‖ũkh − ukh‖

Order of convergence: κ = log2

‖ũkh − ukh‖
‖ũkh/2 − ukh/2‖

Runge’s rule
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Propagation of a solitary wave

x ∈ [−80, 80], T = 20, α = 3, β1 = 1.5, β2 = 0.5, c = 2.

u(x , 0) = ũ(x , 0; c), v(x , 0) = −cũ(x , 0; c)

Table: Rate of convergence κ with respect to h (τ = 0.5h) is O(h2)

h τ Error ψh Rate κ Max iter. Time (sec.)

0.2 0.1 2.0 ∗ 10−2 7 1
0.1 0.05 5.0 ∗ 10−3 1.9923 6 4

0.05 0.025 1.2 ∗ 10−3 1.9988 5 12
0.025 0.0125 3.1 ∗ 10−4 1.9996 5 47

0.0125 0.00625 7.8 ∗ 10−5 1.9999 5 186
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Propagation of a solitary wave

x ∈ [−80, 80], T = 20, α = 3, β1 = 1.5, β2 = 0.5, c = 2.

HK
h - discrete energy; H-exact energy

Table: Rate of convergence of the energy κE for Problem 1

h τ HK
h |H − HK

h | Rate κE
0.2 0.1 32.924380896 1.5 ∗ 10−2

0.1 0.05 32.935546089 3.7 ∗ 10−3 1.9956
0.05 0.025 32.938348048 9.3 ∗ 10−4 1.9989

0.025 0.0125 32.939049207 2.3 ∗ 10−4 1.9997
0.0125 0.00625 32.939224539 5.8 ∗ 10−5 1.9999

In all examples the relative mass error is of order 10−15.
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Propagation of solitary wave

Table: Rate of convergence κ with respect to τ (h = 2τ 2)

τ h Error ψh Rate κ Max.iter Time (sec.)

0.4 0.32 0.0294879273 20 0
0.2 0.08 0.0018559663 3.9899 8 1
0.1 0.02 0.0001160519 3.9993 16 7

Rate of convergence of the discrete solution to the exact one is
O(τ4)
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Interaction of two solitary waves

x ∈ [−160, 160],T = 50, α = 3, β1 = 1.5, β2 = 0.5,
c1 = 1.1, c2 = −1.3

Initial condition:
u(x , 0) = ũ (x + 30, 0; c1) + ũ (x − 40, 0; c2)
v(x , 0) = −c1ũ (x + 30, 0; c1)− c2ũ (x − 40, 0; c2)

Error:

ψh/4 =
‖u[h] − u[h/2]‖2

‖u[h] − u[h/2]‖ − ‖u[h/2] − u[h/4]‖
,

Order:

κ = log2

( ‖u[h] − u[h/2]|‖
‖u[h/2] − u[h/4]‖

)
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Interaction of two solitary waves

x ∈ [−160, 160],T = 80, α = 3, β1 = 1.5, β2 = 0.5, c1 = 1.1,
c2 = −1.3

Table: Rate of convergence κ with respect to h (τ = 0.5h) is O(h2)

h τ Error ψK
h/4 Rate κ Max iter. Time(sec)

0.2 0.1 6 4
0.1 0.05 6 18

0.05 0.025 0.004474784 1.9886 5 58
0.025 0.0125 0.001125320 1.9972 4 186

0.0125 0.00625 0.000281743 1.9992 4 900

Rate of convergence of the discrete solution to the exact one with
respect to τ (h = 2τ2) is O(τ4)
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Collision of two waves with c1 = 1.1 and c2 = −1.3

x ∈ [−160, 160],T = 80, α = 3, β1 = 1.5, β2 = 0.5, p = 2
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Conclusion

In this paper a numerical method with approximation order
O(h2 + τ4) is applied for the solution of the double dispersion
equation.

The method preserves exactly the symplectic structure of the
discrete solution and the discrete mass.

The reported numerical experiments show convergence of the
discrete solution to the exact one with second order with
respect to space step and fourth order with respect to time
step, for single solitary wave and two colliding solitary waves.
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Thank you
for your attention!
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